高功率白光LED散熱與壽命
來源: 作者: 時間:2012-09-27 瀏覽次數(shù):
在眾多環(huán)保光源應用方案中,是相對其他光源方案更為節(jié)能、便于組裝設計的一種光源技術,其中,在光源應用中,高功率使用則為最頻繁的發(fā)光元器件,但白光LED雖在發(fā)光效率、單顆功率各方面表現(xiàn)均有研發(fā)進展,實際上白光LED仍存在發(fā)光均勻性、封裝材料壽命等問題,尤其在芯片散熱的應用限制,則為開發(fā)應用首要必須改善的問題...
高功率白光LED應用于日常照明用途,其實在環(huán)保光源日益受到重視后,已經(jīng)成為開發(fā)環(huán)保光源的首要選擇。但實際上白光LED仍有許多技術上的瓶頸尚待克服,目前已有相關改善方案,用以強化白光LED在發(fā)光均勻性、封裝材料壽命、散熱強化等各方面設計瓶頸,進行重點功能與效能之改善。
環(huán)保光源需求增加 高功率白光LED應用出線
LED光源受到青睞的主因,不外乎產(chǎn)品壽命長、光-電轉(zhuǎn)換效率高、材料特性可在任意平面進行嵌裝等特性。但在發(fā)展日常照明光源方面,由于需達到實用的“照明”需求,原以指示用途的LED就無法直接對應照明應用,必須從芯片、封裝、載板、制作技術與外部電路各方面進行強化,才能達到照明用途所需的高功率、高亮度照明效用。
就市場需求層面觀察,針對照明應用市場開發(fā)的白光LED,可以說是未來用量較高的產(chǎn)品項目,但為達到使用效用,白光LED必須針對照明應用進行重點功能改善。其一是針對進行強化,例如,增加其光-電轉(zhuǎn)換效率,或是加大芯片面積,讓單個LED的發(fā)光量(光通量)達到其設計極限。其二,屬于較折衷的設計方案,若在持續(xù)加大單片LED芯片面積較困難的前提下,改用多片LED芯片封裝在同一個光源模組,也是可以達到接近前述方法的實用技術方案。
以多芯片封裝 滿足低成本、高亮度設計要求
就產(chǎn)業(yè)實務需求檢視,礙于量產(chǎn)彈性、設計難度與控制產(chǎn)品良率/成本問題,LED芯片持續(xù)加大會碰到成本與良率的設計瓶頸。一昧的加大芯片面積可能會碰到的設計困難,并非技術上與生產(chǎn)技術辦不到,而是在成本與效益考量上,大面積之LED芯片成本較高,而且對于實際制造需求的變更設計彈性較低。
反而是利用多片芯片的整合封裝方式,讓多片LED小芯片在載板上的等距排列,利用打線連接各芯片、搭配光學封裝材料的整體封裝,形成一光源模組產(chǎn)品,而多片封裝可以在進行芯片測試后,利用二次加工整合成一個等效大芯片的光源模組,但卻在制作彈性上較單片設計LED光源用元件要更具彈性。
同時,多片之LED芯片模組解決方案,其生產(chǎn)成本也可因為芯片成本而大幅降低,等于在獲得單片式設計方案同等光通量下,擁有成本更低的開發(fā)選項。
多芯片整合光源模組 仍需考量成本效益最大化
另一個發(fā)展方向,是將LED芯片面積持續(xù)增大,透過大面積獲得高亮度、高光通量輸出效果。但過大的LED芯片面積也會出現(xiàn)不如設計預期之問題,常見的改進方案為修改復晶的結構,在芯片表面進行制作改善;但相關改善方案也容易影響芯片本身的散熱效率,尤其在光源應用的,大多要求在高功率下驅(qū)動以獲得更高的光通量,這會造成芯片進行發(fā)光過程中芯片接面所匯集的高熱不容易消散,影響模組產(chǎn)品的應用彈性與主/被動散熱設計方案。
一般設計方案中,據(jù)分析采行7mm2的芯片尺寸,其發(fā)光效率為最佳,但7mm2大型芯片在良率與光表現(xiàn)控制較不易,成本也相對較高;反而使用多片式芯片,如4片或8片小功率芯片,進行二次加工于載板搭配封裝材料形成一LED光源模組,是較能快速開發(fā)所需亮度、功率表現(xiàn)之LED光源模組產(chǎn)品的設計方案。
例如Philips、OSRAM、CREE等光源產(chǎn)品制造商,就推出整合4、8片或更多小型LED芯片封裝之LED光源模組產(chǎn)品。但這類利用多片LED芯片架構的高亮度元件方案也引起了一些設計問題,例如:多顆LED芯片組合封裝即必須搭配內(nèi)置絕緣材料,用以避免各別LED芯片短路現(xiàn)象;這樣的制程相對于單片式設計多了許多程序,因此即使能較單片式方案節(jié)省成本,也會因額外絕緣材料制程而縮小了兩種方案的成本差距。
應用芯片表面制程改善 也可強化LED光輸出量
除了增加芯片面積或數(shù)量是最直接的方法外,也有另一種針對芯片本身材料特性的發(fā)光效能改善。例如,可在LED藍寶石上制作不平坦的表面結構,利用此一凹凸不規(guī)則之設計表面強化LED光輸出量,即為在芯片表面建立Texture表面結晶架構。
OSRAM即有利用此方案開發(fā)Thin GaN高亮度產(chǎn)品,于InGaN層先行形成金屬膜材質(zhì)、再進行剝離制程,使剝離后的表面可間接獲得更高的光輸出量!OSRAM號稱此技術可以讓相同的芯片獲得75%光取出效率。
另一方面,日本OMRON的開發(fā)思維就相當不同,一樣是致力榨出芯片的光取出效率,OMRON即嘗試利用平面光源技術,搭配LENS光學系統(tǒng)為芯片光源進行反射、引導與控制,針對傳統(tǒng)砲彈型封裝結構的常見的光損失問題,進一步改善其設計結構,利用雙層反射效果進而控制與強化LED的光取出量,但這種封裝技術相對更為復雜、成本高,因此大多僅用于LCD TV背光模組設計。
應用仍須改善元件光衰與壽命問題
如果期待LED光源導入日常照明應用,其應用需克服的問題就會更多!因為日常照明光源會有長時間使用之情境,往往一開啟就連續(xù)用上數(shù)個小時、甚至數(shù)十小時,那長時間開啟的LED將會因為元件的高熱造成芯片的發(fā)光衰減、壽命降低現(xiàn)象,元件必須針對熱處理提出更好的方案,以便于減緩光衰問題過早發(fā)生,影響產(chǎn)品使用體驗。
LED光源導入日常應用的另一大問題是,如傳統(tǒng)使用的螢光,使用超過數(shù)十小時均可維持相同的發(fā)光效率,但LED就不同了。因為LED發(fā)光芯片會因為元件高熱而導致其發(fā)光效率遞減,且此一問題不管在高功率或低功率LED皆然,只是低功率LED多僅用于指示性用途,對使用者來說影響相當??;但若LED作為光源使用,其光輸出遞減問題會在為提高亮度而加強單顆元件的驅(qū)動功率下越形加劇,一般會在使用過幾小時后出現(xiàn)亮度下滑,必須進行散熱設計改善才能達到光源應用需求。
材料需因應高溫、短波長光線進行改善
在光源設計方案中,往往會利用增加驅(qū)動電流來換取LED芯片更高的光輸出量,但這會讓芯片表面在發(fā)光過程產(chǎn)生的熱度持續(xù)增高,而芯片的高溫考驗封裝材料的耐用度,連續(xù)運行高溫的狀態(tài)下會致使原具備高熱耐用度的封裝材料出現(xiàn)劣化,且材料劣化或質(zhì)變也會進一步造成透光度下滑,因此在開發(fā)LED光源模組時,亦必須針對封裝材料考量改用高抗熱材質(zhì)。
增加LED光源模組元件散熱方法相當多,可以從芯片、封裝材料、模組之導熱結構、PCB載板設計等進行重點改善。例如,芯片到封裝材料之間,若能強化散熱傳導速度,快速將核心熱源透過封裝材料表面逸散也是一種方法?;蚴怯尚酒c載板間的接觸,直接將芯片核心高熱透過材料的直接傳導熱源至載板逸散,進行LED芯片高熱的重點改善。此外,PCB采行金屬材料搭配與LED芯片緊貼組裝設計,也可因為減少熱傳導的熱阻,達到快速散逸發(fā)光元件核心高熱的設計目標。
另在封裝材料方面,以往LED元件多數(shù)采環(huán)氧樹脂進行封裝,其實環(huán)氧樹脂本身的耐熱性并不高,往往LED芯片還在使用壽命未結束前,環(huán)氧樹脂就已經(jīng)因為長時間高熱運行而出現(xiàn)劣化、變質(zhì)的變色現(xiàn)象,這種狀況在照明應用的LED模組設計中,會因為芯片高功率驅(qū)動而使封裝材料劣化的速度加快,甚至影響元件的安全性。
不只是高熱問題,環(huán)氧樹脂這類塑料材質(zhì),對于光的敏感度較高,尤其是短波長的光會讓環(huán)氧樹脂材料出現(xiàn)破壞現(xiàn)象,而高功率的LED光源模組,其短波長光線會更多,對材料惡化速度也會有加劇現(xiàn)象。
針對LED光源應用設計方案,多數(shù)業(yè)者大多傾向放棄環(huán)氧樹脂封裝材料,改用更耐高溫、抗短波長光線的封裝材料,例如矽樹脂即具備較環(huán)氧樹脂更高的抗熱性,且在材料特性方面,矽樹脂可達到處于150~180°C環(huán)境下仍不會變色的材料優(yōu)勢。
此外,矽樹脂亦可分散藍色光與紫外線,矽樹脂可以抑制封裝材料因高熱或短波長光線的材料劣化問題,減緩封裝材料因為變質(zhì)而導致透光率下滑問題。而就LED光源模組來說,矽樹脂也有延長LED元件使用壽命優(yōu)點,因為矽樹脂本身抗高熱與抗短波長光線優(yōu)點,在封裝材料可抵御LED長時間使用產(chǎn)生的持續(xù)高熱與光線照射,材料的壽命相對長許多,也可讓LED元件有超過4萬小時的使用壽命。
下一篇:散熱塑料在LED燈具中的應用